Finite-Dimensional Simple Poisson Modules
نویسندگان
چکیده
منابع مشابه
Finite-dimensional Simple Poisson Modules
We prove a result that can be applied to determine the finitedimensional simple Poisson modules over a Poisson algebra and apply it to numerous examples. In the discussion of the examples, the emphasis is on the correspondence with the finite-dimensional simple modules over deformations and on the behaviour of finite-dimensional simple Poisson modules on the passage from a Poisson algebra to th...
متن کاملFinite - dimensional non - commutative Poisson algebras ]
Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie algebra structure together with the Leibniz law. For finite-dimensional ones we show that if they are semisimple as associative algebras then they are standard, on the other hand, if they are semisimple as Lie algebras then their associative products are trivial. We also give the descriptions of ...
متن کاملFinite Dimensional Modules for Rational Cherednik Algebras
We construct and study some finite dimensional modules for rational Cherednik algebras for the groups G(r, p, n) by using intertwining operators and a commutative family of operators introduced by Dunkl and Opdam. The coinvariant ring and an analog of the ring constructed by Gordon in the course of proving Haiman’s conjectures on diagonal coinvariants are special cases. We study a certain hyper...
متن کاملFinite dimensional graded simple algebras
Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. We prove that R is a graded division algebra if and only if it is isomorphic to a twisted group algebra of some finite subgroup of G. If the characteristic of F is zero or char F does not divide the order of any finite subgroup of G then we prove that R is graded simple if and only if it i...
متن کاملSimple Finite-dimensional Double Algebras
A double algebra is a linear space V equipped with linear map V ⊗ V → V ⊗ V . Additional conditions on this map lead to the notions of Lie and associative double algebras. We prove that simple finite-dimensional Lie double algebras do not exist over an arbitrary field, and all simple finite-dimensional associative double algebras over an algebraically closed field are trivial. Over an arbitrary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebras and Representation Theory
سال: 2008
ISSN: 1386-923X,1572-9079
DOI: 10.1007/s10468-008-9104-7